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• Write your Name and Student ID on the front page.

• Give full explanation and justification for all your calculations and observations, and write all
your proofs in a clear and rigorous way.

• Answer all questions. Total score: 100 pts. Time allowed: 90 minutes.

(1) (10 pts) Mark each of the following statements “T / True” (meaning that it is a true
statement) or “F / False” (meaning that there are counterexamples to the statement).
No reasoning is required. 2 pts for each correct answer; no pts will be deducted for a
wrong answer.

(a) A free abelian group is a free group.

(b) Let n be a positive integer. The abelianization of a free group on n generators is a
free abelian group on n generators.

(c) Up to isomorphisms, there are 10 abelian groups of order 720.

(d) The commutator subgroup [G,G] of a group G is the biggest normal subgroup of G
such that the quotient of G by it is abelian.

(e) For n ≥ 5, the alternating group An has no nontrivial proper subgroups.

Answer and Explanation.
(a) F / False. A free abelian group is not necessarily a free group. Free groups do not

have to abide by the commutative law, while free abelian groups do.
(b) T / True. The abelianization of a free group on n generators is indeed a free abelian

group on n generators.
(c) T / True. The prime factorization of 720 is 24×32×5. The number of abelian groups

of order n is the number of partitions of the exponents in the prime factorization of
n. The partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1). The partitions
of 2 are (2) and (1, 1). So there are 5× 2 = 10 abelian groups of order 720.

(d) F / False. The commutator subgroup [G,G] is the smallest normal subgroup of G
such that G/[G,G] is abelian. The largest normal subgroup of G such that G/[G,G]
is abelian is G itself.
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(e) F / False. For n ≥ 5, the alternating group An does have nontrivial proper sub-
groups. For example, for n = 5, A5 has a subgroup isomorphic to the symmetric
group A3. They do not have nontrivial proper normal subgroups.

(2) (15 pts) Let G be a group and H ≤ G be a subgroup of G. Define

N :=
⋂
g∈G

gHg−1.

(a) Show that N is a normal subgroup in G.

(b) Show that N is the largest subgroup in H which is normal in G.

Proof. (a) N is a subgroup of G because it is an intersection of subgroups gHg−1.
To prove N is normal, for any a ∈ G, we need to show that aNa−1 = N .
We know that N =

⋂
g∈G gHg

−1. Conjugating this equation by a, we get

aNa−1 =
⋂
g∈G

a(gHg−1)a−1 =
⋂
g∈G

(ag)H(ag)−1.

As g ranges over all elements in G, so does ag, since left multiplication by a is a
bijection from G to itself. Therefore, the set of all (ag)H(ag)−1 as g ranges over all
of G is the same as the set of all gHg−1. Thus, we obtain aNa−1 = N , showing
that N is normal in G.

(b) Suppose K is a subgroup of H that is normal in G. For any g ∈ G and k ∈ K, we
have K = gKg−1 ⊆ gHg−1. Therefore,

K ⊆ N =
⋂
g∈G

gHg−1.

proving N is the largest subgroup in H normal in G.
□

(3) (15 pts) The quaternion group Q = {±1,±i,±j,±k} is defined by the relations
i2 = j2 = k2 = ijk = −1 and (−1)2 = 1. You can use the fact that Q is a group
without proof. Find a composition series for Q. Give full proofs to your assertions.

Proof. First, we observe that G1 = ⟨i⟩ = {1, i,−1,−i} is a subgroup of Q of order 4. We
note that the index [Q : G1] = 2. Therefore, G1 is a normal subgroup of Q

Next, we consider G2 = ⟨−1⟩ = {1,−1}, which is a subgroup of G1 of order 2. Again,
the index [G1 : G2] = 2 and so G2 is a normal subgroup of G1.

Therefore, we have a composition series 1 ⊴ G2 ⊴ G1 ⊴ Q where each factor is a
simple group: G2/1 ∼= Z2, G1/G2

∼= Z2, and Q/G1
∼= Z2. This completes the proof. □
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(4) (15 pts) Let G be a group. Let H, N be normal subgroups of G such that G = HN and
H ∩N = {e}.

(a) Show that G/N ∼= H and G/H ∼= N .

(b) Is it true that G ∼= H ×N? Give full justifications to your assertions.

Proof. (a) To show that G/N ∼= H, we first note that since N is normal in G, we have
a natural projection π : G → G/N . We restrict this map to H to obtain a group
homomorphism ϕ : H → G/N .
The kernel of ϕ is ker(ϕ) = {h ∈ H : ϕ(h) = N} = {h ∈ H : h ∈ N} = H∩N = {e}.
To show that ϕ is surjective, we note that each coset gN ∈ G/N is in the image of
ϕ: Given g ∈ G, we can write g = hn for some h ∈ H and n ∈ N because G = HN .
Then ϕ(h) = hN = hnN = gN .
Therefore, ϕ is an isomorphism and we have G/N ∼= H.
A similar argument shows that G/H ∼= N . We only need to notice that gH =
hnH = Hhn = Hn = nH because H is normal in G.

(b) To show that G ∼= H ×N , we can define a map ψ : H ×N → G by ψ(h, n) = hn.
For h ∈ H,n ∈ N , hnh−1n−1 ∈ H ∩ N = {e}. Therefore, elements in H commute
with elements in N .
To show that ψ is a homomorphism, note that for any h1, h2 ∈ H and n1, n2 ∈ N ,
we have ψ((h1, n1)(h2, n2)) = h1n1h2n2 = h1h2n1n2 = ψ(h1h2, n1n2).
The map ψ is surjective because G = HN , and if(h, n) ∈ ker(ψ), hn = 1, and
h = n−1 ∈ H ∩N = {1}. Then ker(ψ) = {(e, e)}.
Therefore, ψ is an isomorphism, and G ∼= H ×N .

□

(5) (10 pts) Let X be a finite G-set such that |X| ≥ 2. Suppose that the G-action on X is
transitive. Show that the fixed point set XG is empty.

Proof. Assume for contradiction that XG is not empty, i.e., there exists an x0 ∈ XG.
Since the G-action is transitive, for every x ∈ X, there exists a gx ∈ G such that

gxx0 = x. However, since x0 ∈ XG, we have gxx0 = x0. It follows that x = x0 for all
x ∈ X.

This contradicts the assumption |X| ≥ 2. Hence, the assumption that XG is not empty
must be false. Therefore, XG is empty. □

(6) (20 pts) Let G be a group. Recall that an inner automorphism of G is an automor-
phism of the form

ig : G→ G, a 7→ gag−1

for some g ∈ G. Denote by Inn(G) the set of all inner automorphisms of G.
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(a) Show that Inn(G) is a normal subgroup of the automorphism group Aut(G) of G.

(b) Denote by Z(G) the center of G. Show that G/Z(G) ∼= Inn(G). You may use,
without proof, the fact that Z(G) is a normal subgroup of G.

Proof. (a) Let G be a group. Define the map ϕ : G → Aut(G) by g 7→ ig, where
ig(x) = gxg−1 is the conjugation by g. We show that ϕ is a homomorphism. Let
g, h ∈ G. Then igh(x) = (gh)x(gh)−1 = g(hxh−1)g−1 = g(ih(x))g

−1 = ig(ih(x)).
Note that Inn(G) = ϕ(G). Therefore, Inn(G) is a subgroup of Aut(G).
Let ϕ ∈ Aut(G), g ∈ G. Then

ϕigϕ
−1(x)

= ϕ(gϕ−1(x)g−1)

= ϕ(g)ϕ(ϕ−1(x))ϕ(g−1)

= ϕ(g)x(ϕ(g))−1

= iϕ(g)(x).

Therefore, Inn(G)� Aut(G).
(b) We continue to use the homomorphism ϕ : G→ Inn(G) defined by ϕ(g) = ig.

We claim that the kernel of ϕ is the center Z(G) of G. Indeed, for any g ∈ G, we
have ϕ(g) = ig is the identity map on G if and only if gx = xg for all x ∈ G, which
is precisely the definition of Z(G).
Therefore, the kernel of ϕ is Z(G), and by the First Isomorphism Theorem, the
quotient groupG/ker(ϕ) = G/Z(G) is isomorphic to the image of ϕ, which is Inn(G).

□

(7) (15 pts) Let G be a finite group in which every element g ̸= e has order 2. Prove that G
is isomorphic to a direct product of copies of the cyclic group of order 2.

Proof. First, we show that G is abelian. For any g, h ∈ G, we have (gh)2 = e. But since
g2 = h2 = e, this can be rewritten as ghgh = e, and then as ghg−1h−1 = e. Therefore,
gh = hg for any g, h ∈ G, so G is abelian.
Next, we apply the Fundamental Theorem of Finite Abelian Groups, which states that

every finite abelian group G is isomorphic to a direct product of cyclic groups of prime
power order.

Since every element of G has order 2, the order of each factor must have order 2.
Therefore, G is isomorphic to a direct product of copies of the cyclic group of order
2. □


