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e Write your Name and Student ID on the front page.

e Give full explanation and justification for all your calculations and observations, and write all
your proofs in a clear and rigorous way.

e Answer all questions. Total score: 100 pts. Time allowed: 90 minutes.

(1) (10 pts) Mark each of the following statements “T / True” (meaning that it is a true
statement) or “F / False” (meaning that there are counterexamples to the statement).
No reasoning is required. 2 pts for each correct answer; no pts will be deducted for a
Wrong answer.

(a) A free abelian group is a free group.

(b) Let n be a positive integer. The abelianization of a free group on n generators is a
free abelian group on n generators.

(¢) Up to isomorphisms, there are 10 abelian groups of order 720.

(d) The commutator subgroup [G, G] of a group G is the biggest normal subgroup of G
such that the quotient of G by it is abelian.

(e) For n > 5, the alternating group A, has no nontrivial proper subgroups.

Answer and Explanation.

(a) F / False. A free abelian group is not necessarily a free group. Free groups do not
have to abide by the commutative law, while free abelian groups do.

(b) T / True. The abelianization of a free group on n generators is indeed a free abelian
group on n generators.

(c) T / True. The prime factorization of 720 is 2* x 3% x 5. The number of abelian groups
of order n is the number of partitions of the exponents in the prime factorization of
n. The partitions of 4 are (4), (3,1), (2,2), (2,1,1), and (1,1,1,1). The partitions
of 2 are (2) and (1,1). So there are 5 x 2 = 10 abelian groups of order 720.

(d) F / False. The commutator subgroup [G, G| is the smallest normal subgroup of G
such that G/[G, G| is abelian. The largest normal subgroup of G such that G/[G, G]

is abelian is G itself.
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(e) F / False. For n > 5, the alternating group A, does have nontrivial proper sub-
groups. For example, for n = 5, Ay has a subgroup isomorphic to the symmetric
group Asz. They do not have nontrivial proper normal subgroups.

(2) (15 pts) Let G be a group and H < G be a subgroup of G. Define

N = ﬂ gHg™'.

geG

(a) Show that N is a normal subgroup in G.

(b) Show that N is the largest subgroup in H which is normal in G.

Proof. (a) N is a subgroup of G because it is an intersection of subgroups gHg .
To prove N is normal, for any a € G, we need to show that aNa™' = N.
We know that N = ﬂgGG gHg™!'. Conjugating this equation by a, we get

aNa™' = (a(gHg ")a™" = () (ag)H(ag)".

geG geqG

As g ranges over all elements in GG, so does ag, since left multiplication by a is a
bijection from G to itself. Therefore, the set of all (ag)H (ag)™" as g ranges over all
of G is the same as the set of all gHg~!. Thus, we obtain aNa~! = N, showing
that N is normal in G.

(b) Suppose K is a subgroup of H that is normal in G. For any g € G and k € K, we

have K = gKg~' C gHg™!'. Therefore,

KCN=()gHg™"

geG

proving N is the largest subgroup in H normal in G.
O

(3) (15 pts) The quaternion group ) = {=£1,+i,+j,+k} is defined by the relations
i? = j2 = k* = ijk = —1 and (—=1)®> = 1. You can use the fact that Q is a group
without proof. Find a composition series for ). Give full proofs to your assertions.

Proof. First, we observe that Gy = (i) = {1,7,—1, —i} is a subgroup of @ of order 4. We
note that the index [@Q : G1] = 2. Therefore, G; is a normal subgroup of Q)

Next, we consider Gy = (—1) = {1, —1}, which is a subgroup of G; of order 2. Again,
the index [G : Go] = 2 and so G is a normal subgroup of Gj.

Therefore, we have a composition series 1 < Gy < G; < Q where each factor is a
simple group: Go/1 = Zsy, G1/Go = Zso, and Q/G1 = Zy. This completes the proof. [
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(4) (15 pts) Let G be a group. Let H, N be normal subgroups of G such that G = HN and
HNN = {e}.

(a)
(b)

Show that G/N = H and G/H = N.

Is it true that G = H x N7 Give full justifications to your assertions.

Proof. (a) To show that G/N = H, we first note that since N is normal in G, we have

a natural projection 7 : G — G/N. We restrict this map to H to obtain a group
homomorphism ¢ : H — G/N.
The kernel of pisker(¢p) ={h € H:¢(h) =N} ={he€ H:he N} = HNN = {e}.
To show that ¢ is surjective, we note that each coset gN € G/N is in the image of
¢: Given g € GG, we can write g = hn for some h € H and n € N because G = HN.
Then ¢(h) = hN = hnN = gN.
Therefore, ¢ is an isomorphism and we have G/N = H.
A similar argument shows that G/H = N. We only need to notice that gH =
hnH = Hhn = Hn = nH because H is normal in G.
To show that G = H x N, we can define a map ¢ : H Xx N — G by ¢(h,n) = hn.
For h € Hyn € N, hnh™'n™' € HN N = {e}. Therefore, elements in H commute
with elements in V.
To show that 1 is a homomorphism, note that for any hy,hy € H and ny,ne € N,
we have Q/J((hl,nl)(hg, HQ)) = h1n1h2n2 = h1h2n1n2 = w(hlhz, anLQ).
The map 1 is surjective because G = HN, and if(h,n) € ker(¢), hn = 1, and
h=n"te€ HNN = {1}. Then ker(v)) = {(e, e)}.
Therefore, 1 is an isomorphism, and G = H x N.

O

(5) (10 pts) Let X be a finite G-set such that | X| > 2. Suppose that the G-action on X is
transitive. Show that the fixed point set Xq is empty.

Proof. Assume for contradiction that Xg is not empty, i.e., there exists an zy € Xg.
Since the G-action is transitive, for every z € X, there exists a g, € G such that
g:xo = x. However, since o € X¢g, we have g,xo = xo. It follows that x = x( for all

r e X.
This contradicts the assumption | X| > 2. Hence, the assumption that X is not empty
must be false. Therefore, X is empty. O

(6) (20 pts) Let G be a group. Recall that an inner automorphism of G is an automor-
phism of the form

ig: G — G, a— gag!

for some g € G. Denote by Inn(G) the set of all inner automorphisms of G.



(a) Show that Inn(G) is a normal subgroup of the automorphism group Aut(G) of G.

(b) Denote by Z(G) the center of G. Show that G/Z(G) = Inn(G). You may use,
without proof, the fact that Z(G) is a normal subgroup of G.

Proof. (a) Let G be a group. Define the map ¢ : G — Aut(G) by g — i,, where
ig(z) = grg~! is the conjugation by g. We show that ¢ is a homomorphism. Let
g,h € G. Then ig(z) = (gh)x(gh)™ = glhah™)g™' = g(in(z))g™ = i,(in(2)).
Note that Inn(G) = ¢(G). Therefore, Inn(G) is a subgroup of Aut(G).
Let ¢ € Aut(G),g € G. Then

Therefore, Inn(G) < Aut(G).
(b) We continue to use the homomorphism ¢ : G — Inn(G) defined by ¢(g) = i,.

We claim that the kernel of ¢ is the center Z(G) of G. Indeed, for any g € G, we

have ¢(g) = i, is the identity map on G if and only if gz = xg for all x € G, which

is precisely the definition of Z(G).

Therefore, the kernel of ¢ is Z(G), and by the First Isomorphism Theorem, the

quotient group G/ker(¢) = G/Z(G) is isomorphic to the image of ¢, which is Inn(G).
0

(7) (15 pts) Let G be a finite group in which every element g # e has order 2. Prove that G
is isomorphic to a direct product of copies of the cyclic group of order 2.

Proof. First, we show that G is abelian. For any g, h € G, we have (gh)? = e. But since
g?> = h? = e, this can be rewritten as ghgh = e, and then as ghg 'h~! = e. Therefore,
gh = hg for any g, h € G, so G is abelian.

Next, we apply the Fundamental Theorem of Finite Abelian Groups, which states that
every finite abelian group G is isomorphic to a direct product of cyclic groups of prime
power order.

Since every element of GG has order 2, the order of each factor must have order 2.
Therefore, GG is isomorphic to a direct product of copies of the cyclic group of order
2. O



